123 research outputs found

    A secure additive protocol for card players

    Get PDF
    Consider three players Alice, Bob and Cath who hold a, b and c cards, respectively, from a deck of d=a+b+c cards. The cards are all different and players only know their own cards. Suppose Alice and Bob wish to communicate their cards to each other without Cath learning whether Alice or Bob holds a specific card. Considering the cards as consecutive natural numbers 0,1,..., we investigate general conditions for when Alice or Bob can safely announce the sum of the cards they hold modulo an appropriately chosen integer. We demonstrate that this holds whenever a,b>2 and c=1. Because Cath holds a single card, this also implies that Alice and Bob will learn the card deal from the other player's announcement

    Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms.

    Get PDF
    We determined the effects of maternal diet-induced obesity on offspring adipose tissue insulin signalling and miRNA expression in the aetiology of insulin resistance in later life. Although body composition and glucose tolerance of 8-week-old male offspring of obese dams were not dysregulated, serum insulin was significantly (p<0.05) elevated. Key insulin signalling proteins in adipose tissue were down-regulated, including the insulin receptor, catalytic (p110β) and regulatory (p85α) subunits of PI3K as well as AKT1 and 2 (all p<0.05). The largest reduction observed was in IRS-1 protein (p<0.001), which was regulated post-transcriptionally. Concurrently, miR-126, which targets IRS-1, was up-regulated (p<0.05). These two features were maintained in isolated primary pre-adipocytes and differentiated adipocytes in-vitro. We have therefore established that maternal diet-induced obesity programs adipose tissue insulin resistance. We hypothesise that maintenance of the phenotype in-vitro strongly suggests that this mechanism is cell autonomous and may drive insulin resistance in later life

    Neural correlates of attention-executive dysfunction in lewy body dementia and Alzheimer's disease.

    Get PDF
    Attentional and executive dysfunction contribute to cognitive impairment in both Lewy body dementia and Alzheimer's disease. Using functional MRI, we examined the neural correlates of three components of attention (alerting, orienting, and executive/conflict function) in 23 patients with Alzheimer's disease, 32 patients with Lewy body dementia (19 with dementia with Lewy bodies and 13 with Parkinson's disease with dementia), and 23 healthy controls using a modified Attention Network Test. Although the functional MRI demonstrated a similar fronto-parieto-occipital network activation in all groups, Alzheimer's disease and Lewy body dementia patients had greater activation of this network for incongruent and more difficult trials, which were also accompanied by slower reaction times. There was no recruitment of additional brain regions or, conversely, regional deficits in brain activation. The default mode network, however, displayed diverging activity patterns in the dementia groups. The Alzheimer's disease group had limited task related deactivations of the default mode network, whereas patients with Lewy body dementia showed heightened deactivation to all trials, which might be an attempt to allocate neural resources to impaired attentional networks. We posit that, despite a common endpoint of attention-executive disturbances in both dementias, the pathophysiological basis of these is very different between these diseases.This work was supported by an Intermediate Clinical Fellowship . Grant Number: (WT088441MA) to John‐Paul Taylor the National Institute for Health Research (NIHR), and Newcastle Biomedical Research Unit (BRU) based at Newcastle upon Tyne Hospitals NHS Trust, Newcastle University

    Reconstructing Native American Population History

    Get PDF
    The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America
    corecore